Package: rMOST 1.0.1

rMOST: Estimates Pareto-Optimal Solution for Hiring with 3 Objectives

Estimates Pareto-optimal solution for personnel selection with 3 objectives using Normal Boundary Intersection (NBI) algorithm introduced by Das and Dennis (1998) <doi:10.1137/S1052623496307510>. Takes predictor intercorrelations and predictor-objective relations as input and generates a series of solutions containing predictor weights as output. Accepts between 3 and 10 selection predictors. Maximum 2 objectives could be adverse impact objectives. Partially modeled after De Corte (2006) TROFSS Fortran program <https://users.ugent.be/~wdecorte/trofss.pdf> and updated from 'ParetoR' package described in Song et al. (2017) <doi:10.1037/apl0000240>. For details, see Study 3 of Zhang et al. (2023).

Authors:Chelsea Song [aut, cre], Yesuel Kim [ctb]

rMOST_1.0.1.tar.gz
rMOST_1.0.1.zip(r-4.5)rMOST_1.0.1.zip(r-4.4)rMOST_1.0.1.zip(r-4.3)
rMOST_1.0.1.tgz(r-4.4-any)rMOST_1.0.1.tgz(r-4.3-any)
rMOST_1.0.1.tar.gz(r-4.5-noble)rMOST_1.0.1.tar.gz(r-4.4-noble)
rMOST_1.0.1.tgz(r-4.4-emscripten)rMOST_1.0.1.tgz(r-4.3-emscripten)
rMOST.pdf |rMOST.html
rMOST/json (API)
NEWS

# Install 'rMOST' in R:
install.packages('rMOST', repos = c('https://diversity-paretooptimal.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.00 score 3 scripts 147 downloads 5 exports 1 dependencies

Last updated 1 years agofrom:7c4eb385d9. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 03 2024
R-4.5-winOKNov 03 2024
R-4.5-linuxOKNov 03 2024
R-4.4-winOKNov 03 2024
R-4.4-macOKNov 03 2024
R-4.3-winOKNov 03 2024
R-4.3-macOKNov 03 2024

Exports:MOSTParetoR_1C_2AIRParetoR_2CParetoR_2C_1AIRParetoR_3C

Dependencies:nloptr

rMOST-vignette

Rendered fromrMOST-vignette.Rmdusingknitr::rmarkdownon Nov 03 2024.

Last update: 2023-11-09
Started: 2022-11-14

Readme and manuals

Help Manual

Help pageTopics
MOSTMOST
ParetoR_1C_2AIRParetoR_1C_2AIR
ParetoR_2CParetoR_2C
ParetoR_2C_1AIRParetoR_2C_1AIR
ParetoR_3CParetoR_3C